An interpretation of some whole plant water transport phenomena.
نویسندگان
چکیده
A treatment of water flow into and through plants to the evaporating surface of the leaves is presented. The model is driven by evaporation from the cell wall matrix of the leaves. The adsorptive and pressure components of the cell wall matric potential are analyzed and the continuity between the pressure component and the liquid tension in the xylem established. Continuity of these potential components allows linking of a root transport function, driven by the tension in the xylem, to the leaf water potential. The root component of the overall model allows for the solvent-solute interactions characteristic of a membrane-bound system and discussion of the interactions of environmental variables such as root temperature and soil water potentials. A partition function is developed from data in the literature which describes how water absorbed by the plant might be divided between transpiration and leaf growth over a range of leaf water potentials.Relationships between the overall system conductance and the conductance coefficients of the various plant parts (roots, xylem, leaf matrix) are established and the influence of each of these discussed.The whole plant flow model coupled to the partition function is used to simulate several possible relationships between leaf water potential and transpiration rate. The effects of changing some of the partition function coefficients, as well as the root medium water potential on these simulations is illustrated.In addition to the general usefulness of the model and its ability to describe a wide range of situations, we conclude that the relationships used, dealing with bulk fluid flow, diffusion, and solute transport, are adequate to describe the system and that analogically based theoretical systems, such as the Ohm's law analogy, probably ought to be abandoned for this purpose.
منابع مشابه
Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid
In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...
متن کاملComposite Transport Model and Water and Solute Transport across Plant Roots: An Update
The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apo...
متن کاملAn Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?
Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic ...
متن کاملFinite Element Model of Soil Water and Nutrient Transport with Root Uptake: Explicit Geometry and Unstructured Adaptive Meshing
In this paper, we consider a model of soil water and nutrient transport with plant root uptake. The geometry of the plant root system is explicitly taken into account in the soil model. We first describe our modeling approach. Then, we introduce an adaptive mesh refinement procedure enabling us to accurately capture the geometry of the root system and small-scale phenomena in the rhizosphere. F...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 71 4 شماره
صفحات -
تاریخ انتشار 1983